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Abstract 

Corrections are given to Table 4.4.3 of International Tables 
for X-ray Crystallography [Vol. I (1969), Birmingham: 
Kynoch Press]. 

Certain errors have been found in International Tables for 
X-ray Crystallography (1969) and the corrections are given 
below. 
(1) Table 4.4.30RTHORHOMBIC. Laue Class mmm on 

p. 349 
In the seventeenth row from the top of the table (diffrac- 

tion symbol mmmPbcn), in the column of the point group 
mmm: 

Replace the space group Pncn by Pbcn. 
(2) Table 4.4.3 TETRAGONAL. Laue Class 4/mmm on p. 
350 

In the nineteenth row from the top of the table (diffraction 
symbol 4/mmmPnc-), in the column of the point group 
4/mmm: 
Replace the space group P4/ncm by P42/ncm. 

Reference 

International Tables for X-ray Crystallography (1969). Vol. 
I. Birmingham: Kynoch Press. 
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International Tables for X-ray Crystallography, Vol. IV. Error in table of equivalent reflections in the 
presence of dispersion effeets.* By GRAHEME J. B. WmLtAMS, Chemistry Department, Brookhaven National 
Laboratory, Upton, NY  11973, USA 

(Received 5 July 1979; accepted 15 August 1979) 

Abstract 

Table 2.3.2, Reciprocal Lattice Points Equivalent under the 
Operations of a Given Noncentrosymmetric Point Group, on 

* Work performed at Brookhaven National Laboratory which is 
operated under contract with the US Department of Energy and 
supported by its office of Basic Energy Sciences. 

p. 151 of International Tables for X-ray Crystallography 
[Vol. IV (1974), Birmingham: Kynoch Press] contains an 
error for the point group 422. The entry hkl should be 
replaced by hki. 

All relevant information is given in the Abstract. 
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The line profile for a random assemblage of identical parallelepiped crystals. A correction. By G. ALLEGRA 

and G. RONCA, lstituto di Chimiea del Politeenieo, Piazza L. da Vinci 32, 20133 Milano, Italy 
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Abstract 

Allegra & Ronca [Acta Cryst. (1978), A34, 1006--1013] 
proposed an incorrect analytical expression for the line pro- 
file of identical parallelepiped crystals. The correct general 
expression is now given; in the special case of cubic crystals 
with a cubic unit cell it reduces to the expression proposed 
long ago by A. J. C. Wilson [X-ray Optics (1949), equation 
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26, p. 43. Methuen]. The implications of the new result upon 
the line profile of a polycrystalline sample obeying a 
Gaussian distribution of crystal sizes are discussed. 

In a recent paper (Allegra & Ronca, 1978, hereinafter paper 
I), we proposed a general analytical expression for the line 
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profile of a random assemblage of identical parallelepiped 
crystals of any shape (equation 9). Denoting as A S  the 
difference between the general reciprocal vector length S 
(=2  sin 0/2) and that corresponding to the Bragg point (hkl), 
the result was derived from the following integral (equations 
4 and 4' of  paper I) 

J " h k l ( A S )  :--" ~ ( U ,  13, W, X )  

+co 

f f s in2[u(X- -  Y - - Z ) ]  sin2(vy) 
= K (X  -- Y -- Z)  2 y2 

- o o  

sin2(wZ) 
× 

Z z 
~ d Y d Z ,  (1) 

where , T h k l ( A S  ) : ( Ih , t (AS)) / IF2(hk l ) l ,  the average being 
effected on the intensity scattered by a single crystal, X is 
proportional to A S  and u, v, w and K are related to crystal 
size, unit cell dimensions and Bragg indices. Evaluation of 
the above integral was performed after: (i) triple partial 
differentiation over the variables (u,v ,w) leading to a 
convolution integral of  three functions of (X,  Y ,Z)  of the 
type s i n ( p x ) / x ;  (ii) evaluation of the resulting integral as the 
Fourier transform of the product of three corresponding 
'step' functions; (iii) successive integration over u, v and w to 
get 

N sin 2 ~' 
,J"h,I(LJS) = --~- S O ~v u/2 (2) 

where: N = N~ N 2 N 3 and Na, N 2 and N 3 are the respective 
numbers of  unit cells along a, b and e (unit cell axes), which 
are parallel in their turn to the crystal edges; V is the unit cell 
volume; S o = S(hkl);  ¢v is the lowest among the three 
quantities t~, t3, rb (,respectively proportional to u, v, w, 
equation 1) defined as: 

Nl N2 N3 
= - - ;  b = - - ;  ~ = - - ;  (3) 

a* Iqll b* Iq21 c* [q3l 

q l = ha* + kb* cos ~ + lc* cos fl*, 

q2 = ha* cos 7* + kb* + lc* cos a*, 

q3 : ha* cosfl* + kb* c o s - *  + lc*; 

v/ = zffV S o AS.  

Soon after the appearance of paper l, Professor A. J. C. 
Wilson pointed out to one of us that (2) showed dis- 
crepancies with some of his results. This prompted our re- 
examination of the problem, which led us to discover the 
following error in our mathematical sequence. 

The triple integration referred to in point (iii) (before 
equation 2, see above) was performed between zero and the 
general value for each of the three variables (u, v, w) to 
ensure that the result vanishes for any of them being zero. 
Actually, the procedure is incorrect, although it seems to be 
suggested by inspection of (1), because u and v cannot 
vanish independently of w in (2); in fact, this equation is only 
valid under the constraints u > w, v > w (_>0). It may be 
proved that the correct solution is given by (2) plus three 

functions: one depends on (~,ri,,~), another on (b,~b,~) and 
the third on (rb,~) only. It is best obtained by applying 
directly to (1) the same deconvolution technique adopted in 
paper I for its triple partial derivative with respect to u, v and 
w. In fact, as a function of X, (I) is the convolution of three 
functions of  the type s in2(px) /x  z (p  being u, v or w), and its 
Fourier transform is the product of  the corresponding 
Fourier transforms. Apart  from a constant factor, each of 
these is a function of the type ~(t) = (2p  -- Itl)(t = trans- 
formed variable) in the interval - 2 p  < t < 2p  and zero 
otherwise; in fact it is easy to verify that 

+co 

s in2(px) /x  2 = - -  ~(t) e -i~ dx  
2~ 

--00 

2p  

I f  = -~ (2p  -- t) cos (tx)  dx.  (4) 

0 

Consequently, the Fourier transform of q~(X) (see equation 
1) is given by 

+oo 

~0(t) = S q~(X) e ux d X  
--00 

7g 3 

= K - - ( 2 u - - I t l ) ( 2 v - - I t l ) ( 2 w - I t l ) ,  (5) 
8 

for - 2 w  < t _< 2w and zero otherwise. Antitransformation 
gives 

2w 

@(u,v ,w ,X)  = K---~ (2u - t) (2v -- t) 

o 

x (2w - t) cos ( tX)  dt, (6) 

and, remembering from paper I that fi = u/a*lql l ,  b = 
v /a*lql l ,  ¢v = w/a*lq~l and 

q2 q3 b* c* 
K T g  2 = S o - -  

Iq~l Va .3 '  

after suitable substitutions we get 

N ( sin 2 qJ 
= --SOC¢ ,~'hkl(AS) V ~2 

+ ~i, + 
2u/3 

( l ' )  

where the symbols have the meaning already defined in (3). 
As an example, the above expression reduces to that 
obtained by Wilson long ago for the special case of a cubic 
crystal with a cubic unit cell (cf. Wilson, 1949, equation 26, 
p. 43). It may be interesting to observe that the integral over 
AS from - o o  to + oo gives the correct value N / V  for both (2) 
and (6) (a misleading feature for us), because it is possible to 
show that the 'new' terms within square brackets in (1') give 
a zero contribution upon integration. The peak intensity 
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-]-oo [i.e. J~'hkl(Z]S : 0)]  d i v i d e d  by f-oo ~"hkl(Z]S) dAS = N / V  
gives the apparent particle size as 

e=So~V 1 - - ~ w  + + ~ ~-~j, (7) 

which also reduces to (19) (p. 39) of Wilson (1949) as a 
special case. 

Equation (2) of paper I may be written as 

A S  = d x *  q J S  o + Ay* q 2 / S  o + dg* q3/So, (8) 

where Ax*  Ay* and Az* are the components along a*, b* 
and e* of the vector A S, parallel to S(hkl) = S o. This means 
that q~/S o, for example, is the cosine of the angle between S o 
and a*. In the special case in which S o is exactly aligned with 
one of the crystal edges, e.g. the edge parallel to e, S o is 
orthogonal to both a* and b*; consequently q~ = q2 = 0 and 
both fi and b tend to infinity (cfequations 3, this paper). In 
this case (6) exactly reduces to (2); the effective crystal thick- 
ness (see equations 12, paper I and equations 3, this paper) is 
given by S O (.v = N 3 So~c* Iq31 = N3/c* Icos ( o~e*)l - N 3 c = 
length of the crystal edge along c, as expected. Con- 
sequently, (19) of paper I, although incorrect in general 
because of the error discussed above, exactly represents in 
this case the line profile for a Gaussian distribution of crystal 

sizes. More generally, (6) is better approximated by (2), the 
smaller the ratios ~/b and ~/b are as compared with unity; 
this condition may be fulfilled (cf. equations 3) either when 
N 1 and N 2 are large compared with N 3 or when ql and q2 are 
small compared with q3, or both. In terms of the Gaussian 
distribution of crystal sizes 

P(N, ,N2,N3)  = 8a,871~z 3/z exp ( - a  2 N ] - ,82 N 2 - 72 N]) (9) 

(e l  equation 13, paper I), the average values of (fi,b,~) are 
given by (1/aa*lq11, 1/,sb*lq21, 1/),c*Jq31). Consequently, 
the larger ),c*lq31 is than both the other corresponding 
quantities, the better the true intensity profile is approxi- 
mated by (19), paper I. 

We want to express our appreciation to Professor Wilson 
for his extremely important and helpful criticism. 
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